Planar acyclic computation
نویسندگان
چکیده
منابع مشابه
Acyclic Subgraphs of Planar Digraphs
An acyclic set in a digraph is a set of vertices that induces an acyclic subgraph. In 2011, Harutyunyan conjectured that every planar digraph on n vertices without directed 2-cycles possesses an acyclic set of size at least 3n/5. We prove this conjecture for digraphs where every directed cycle has length at least 8. More generally, if g is the length of the shortest directed cycle, we show that...
متن کاملAcyclic colorings of planar graphs
It is shown that a planar graph can be partitioned into three linear forests. The sharpness of the result is also considered. In 1969, Chartrand and Kronk [2] showed that the vertex arboricity of a planar graph is at most 3. In other words, the vertex set of a planar graph can be partitioned into three sets each inducing a forest. In this paper we present an improvement on this result: that the...
متن کاملAcyclic list 7-coloring of planar graphs
Theacyclic list chromatic numberof every planar graph is proved to be at most 7. 2002 Wiley Periodicals, Inc. J Graph Theory 40: 83–90, 2002
متن کاملAcyclic Edge coloring of Planar Graphs
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a(G). It was conjectured by Alon, Sudakov and Zaks (and much earlier by Fiamcik) that a(G) ≤ ∆ + 2, where ∆ = ∆(G) denotes the maximum degree of the gra...
متن کاملAcyclic colorings of locally planar graphs
It will be shown that locally planar graphs are acyclically 8-colorable. In this result, a new notion of local planarity based on homology instead of the homotopy is used. This gives weaker requirement than the usual large edge-width condition.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Information and Computation
سال: 1991
ISSN: 0890-5401
DOI: 10.1016/0890-5401(91)90003-k